
Introduction to GraphNN

Yongbin Feng (Fermilab)

AI Lab-Wide Meetings

November 18th, 2022

1

Disclaimer

2

• I’m NOT a GraphNN expert, so I hope the messages I delivered are mostly correct, but it could be
wrong/misunderstanding…

• Most of them maybe sound straightforward; but in practice, training these neural networks could
be much more tricky; need some experiences/tunings/magic…

Disclaimer

3

• I’m NOT a GraphNN expert, so I hope the messages I delivered are mostly correct, but it could be
wrong/misunderstanding…

• Most of them maybe sound straightforward; but in practice, training these neural networks could
be much more tricky; need some experiences/tunings/magic…

Overview

4

(Fully-Connected) Deep-
Neural-Network

(Multi Layer Perceptron)

Convolutional Neural
Network

Graph Neural Network

Overview

5

(Fully-Connected) Deep-
Neural-Network

(Multi Layer Perceptron)

Convolutional Neural
Network

Graph Neural Network

Overview

6

(Fully-Connected) Deep-
Neural-Network

(Multi Layer Perceptron)

Convolutional Neural
Network

Graph Neural Network

Overview

7

Graph Neural Network
(Message Passing NN)

GraphSage Graph Attention Network (Graph) Transformers

Multi Layer Perceptron

8

• “Artificial” neuron / “Perceptron”

• Inputs: x (flatten), outputs: y,

• Outputs

• W and b are the trainable weights and biases

• is the activation function, to bring non-linearity to the NN

y = σ(W × x + b)

σ

x_0

x_1

x_2

y_0

Multi Layer Perceptron

9

• is the activation function, to bring non-linearity to the NN:

✤ ReLU for regression problems

✤ Sigmoid for classification problems; Softmax for multi-classification
problems

σ

x_0

x_1

x_2

y_0

Multi Layer Perceptron

10

• Relatively easy to train and deploy;

• but everything has to be “flat” -> “Geometric”/localized
information are lost

Convolutional Neural Network

11

• E.g: To identity a specific kind of galaxy:

Convolutional Neural Network

12

• E.g: To identity a specific kind of galaxy:

✤ Need “local” information: Conv (with Kernel)

Convolutional Neural Network

13

• E.g: To identity a specific kind of galaxy:

✤ Need “local” information: Conv (with Kernel)

Convolutional Neural Network

14

• E.g: To identity a specific kind of galaxy:

✤ Need “local” information: Conv (with Kernel)

✤ Need to “combine” all local information together: Pooling: Max, Mean, Sum, etc

Convolutional Neural Network

15

• Convolutional Neural Network

✤ Need “local” information: Conv (with Kernel)

✤ Need to “combine” all local information together: Pooling: Max, Mean, Sum, etc

Convolutional Neural Network

16

• Convolutional Neural Network

✤ Works well on image-like data (Euclidean space); computing-wise efficient and fast: same kernel applied everywhere

Convolutional Neural Network

17

• Convolutional Neural Network

✤ Works well on image-like data (Euclidean space); computing-wise efficient and fast: same kernel applied everywhere

✤ But not all data are image-like;

Convolutional Neural Network

18

• Convolutional Neural Network

✤ Works well on image-like data (Euclidean space); computing-wise efficient and fast: same kernel applied everywhere

✤ But not all data are image-like: social relationship

Convolutional Neural Network

19

• Convolutional Neural Network

✤ Works well on image-like data (Euclidean space); computing-wise efficient and fast: same kernel applied everywhere

✤ But not all data are image-like: social relationship

Convolutional Neural Network

20

• Convolutional Neural Network

✤ Works well on image-like data (Euclidean space); computing-wise efficient and fast: same kernel applied everywhere

✤ But not all data are image-like: social relationship

Convolutional Neural Network

21

• Convolutional Neural Network

✤ Works well on image-like data (Euclidean space); computing-wise efficient and fast: same kernel applied everywhere

✤ But not all data are image-like: social network; particles in jets, etc

✤ And the resolutions, etc can be different in different phase-space regions

CNN -> GNN

22

• Convolutional Neural Networks work on Euclidean space and can aggregate information from the “real”
neighbors adjacent to each target.

• Moving to Non-Euclidean space; do the similar type of “convolutions” to extract and aggregate information
from neighboring particles -> Graph Neural Network (More general and more powerful)

Graph Neural Networks

23

• One Graph (G) has nodes (V) and edges (E): G = (V,E)

• A set of nodes { } and their connections (edges): { }

• Collect information among the nodes and edges

hi eij

Message Passing Neural Network

24

• “message passing”: for target node i, “message” passed from
neighboring nodes to the target node is:

• Node feature update for the target node is:

• M and U are message functions and node update functions,
respectively.

m(k)
i = ∑

j

M(h(k)
i , h(k)

j , eij)

h(k+1)
i = U(h(k)

i , m(k)
i)

Message Passing Neural Network

25

• “message passing”: for target node i, “message” passed from
neighboring nodes to the target node is:

• Node feature update for the target node is:

• Finally: with and , one can do:

✤ Node classification: with

✤ Edge classification: with or

✤ Graph prediction: with pooling of a graph

m(k)
i = ∑

j

M(h(k)
i , h(k)

j , eij)

h(k+1)
i = U(h(k)

i , m(k)
i)

{h(p)
i } {e(P)

ij }

f(h(P)
i)

f(eP
ij) f(h(P)

i , h(P)
j)

Message Passing Neural Network

26

• “message passing”: for target node i, “message” passed from
neighboring nodes to the target node is:

• Node feature update for the target node is:

• Can aggregate information from both target node, neighboring node,
and the edges;

• can incorporate different kinds of symmetries and assumptions when
designing these functions -> very general and powerful

m(k)
i = ∑

j

M(h(k)
i , h(k)

j , eij)

h(k+1)
i = U(h(k)

i , m(k)
i)

27

• Message:

• Node feature update:

• Here is the pooling operation, can be max, mean, sum, etc;

m(k)
i = ∑

j

h(k)
j V

h(k+1)
i = σ(h(k)

i W + m(k)
i) = σ(h(k)

i W + ∑
j

h(k)
j V)

∑
j

Example: GraphSage

28

• After the node feature update:

• Rebuild the graph in the new latent space, with e.g., k-nearest neighbors

• The graph is dynamic now - the edges can change after one layer

h(k+1)
i = σ(h(k)

i W + m(k)
i) = σ(h(k)

i W + ∑
j

h(k)
j V)

{h(k+1)
i }

Example: Dynamic Graph CNN

29

• Graphsage treats all the edges the same;
different edges can have different weights
when aggregating information

• I.e. the message becomes:

 where is “attention” and calculated as:

 Q, K, V are often referred to as Query, Key,
and Value

m(k)
i = ∑

j

h(k)
j Va(k)

ij

a(k)
ij

a(k)
ij = softmax(Q(k)h(k)

i ⋅ K(k)h(k)
j)

Example: Graph Attention Network

30

• In partice, one “attention” usually focus on
one or a few edges/features

• Need more “attentions” -> multi-head
attention

• I.e. the message becomes:

)

 where is l-th “attention” in the k-th
layer:

m(k)
i = Concat(∑

j

h(k)
j V(l)a(k,l)

ij

a(k,l)
ij

a(k,l)
ij = softmax(Q(k,l)h(k)

i ⋅ K(k,l)h(k)
j)

Example: Graph Attention Network

Graph Attention Network -> Transformer

31

• Transformer are fully-connected word graph, with multi-
head attention, layer-norms, and feed-forward MLP

Goods and Bads

32

• Goods and bads come at the same time. E.g.:

• Lower and lower level of information, with more advanced architectures, can bring huge boosts to
performance increases

• Industry, and open-source community, have provided us lots of tools to play with these, easy to get
hands on these

• How much we trust such low-level information, is questionable; calibrations and evaluations of
systematic uncertainties can be very hard;

• computing-wise can also take lots of resources

Back Up

33

