Introduction to GraphNN

Yongbin Feng (Fermilab)
Al Lab-Wide Meetings
November |8th, 2022

Disclaimer

* I'm NOT a GraphNN expert, so | hope the messages | delivered are mostly correct, but it could be
wrong/misunderstanding...

* Most of them maybe sound straightforward; but in practice, training these neural networks could
be much more tricky; need some experiences/tunings/magic...

Disclaimer

* I’'m NOT a GraphNN expert, so | hope the messages | delivered are mostly correct, but it could be
wrong/misunderstanding...

* Most of them maybe sound straightforward; but in practice, training these neural networks could
be much more tricky; need some experiences/tunings/magic...

:i (Fully-Connected) Deep- '
/; Neural-Network ;‘
i (Multi Layer Perceptron) “

Outputs

Output

Input Hidden Layer

Layer Layer

Overview

Overview

'; (Fully-Connected) Deep- '

Convolutional Neural

Neural-Network
Network

(Multi Layer Perceptron) 1

Conv_1 Conv_2
Outputs Convolution Convolution
(5 x 5) kernel Max-Pooling (5x5) kernel = max-pooling
valid padding 2x2) valid padding (2x2)

S Af*‘f**

- Output nl channels nl channels n2 chann
Input Hidden P INPUT
Layer (28 x 28 x 1) (24 x 24 x n1) (12 x 12 x n1) (8x8xr
Layer Layer

Overview

(Fully-Connected) Deep- | Convolutional Neural

Neural-Network P —— e ' Graph Neural Network |

f (Multi Layer Perceptron) '- Network

Conv_1 Conv_2
Outputs Convolution Convolution

(5 x 5) kernel Max-Pooling (5x5) kernel = max-pooling
valid padding (2x2) valid padding (2x2)

f*\ Af*\fL*

: Output nl channels nl channels n2 chann
Input Hidden P INPUT ayl
Layer (28 x 28 x 1) (24 x 24 x n1) (12 x 12 x n1) (8x8xr
Layer Layer

Overview

hi = U(Z Cijwrhj)

iEN;

Graph Neural Network :2
- (Message Passing NN) |

Output
Probabilities

Linear

(Enea ™
Add & Norm J<~

Feed
Forward

\ l Add & Norm ﬁ

concat/avg

]/ label -

N
I

4 1
NG) Multi-Head
Feed Attention
Forward T 7 7 Nx
1. Sample neighborhood | | - * | ~(Add&Nom)
- ample neignoornoo 2. Aggregate feature information 3. Predict graph context and label ——=— Masked
. . . . ulti-Hea Multi-Head
from neighbors using aggregated information Aortion Attontion
& J U —)
Positional) Positional
Encoding) & Encoding
Input Output
Embedding Embedding
Inputs Outputs

(shifted right)

Multi Layer Perceptron

Input Layer Hidden Layers Qutput Layer
g N

“Artificial” neuron / “Perceptron”

Inputs: x (flatten), outputs: Y,

Outputs y = 6(W X x + b)

W and b are the trainable weights and biases

o is the activation function, to bring non-linearity to the NN

Multi Layer Perceptron

RelLU Activation Function

10 A

§ =
> 4
2 -
max(0,x)
0<
-100 -75 -50 -25 00 25 50 75 100 X
X Axis
_Sig(t):Hle_t 1.0 sig(t)
0.8
* o is the activation function, to bring non-linearity to the NN:
% RelU for regression problems
t\
2 Sigmoid for classification problems; Softmax for multi-classification s e a2 > 4 6 s
problems
Output Softmax
Iaygr activation function Probabilities

1.3 0.02

5.1 eZi 0.90

22 |=—) — =—|0.05

0.7 D i1 €7 0.01

o 1.1 0.02

Multi Layer Perceptron

Input Layer Hidden Layers Qutput Layer
e N

* Relatively easy to train and deploy; |

* but everything has to be “flat” -> “Geometric”/localized
information are lost

10

Convolutional Neural Network

* E.g: To identity a specific kind of galaxy:

[

Convolutional Neural Network

* E.g: To identity a specific kind of galaxy:

2 Need “local” information: Conv (with Kernel)

12

Convolutional Neural Network

* E.g: To identity a specific kind of galaxy:

2 Need “local” information: Conv (with Kernel)

13

Convolutional Neural Network

* E.g: To identity a specific kind of galaxy:
% Need “local” information: Conv (with Kernel)

% Need to “combine” all local information together: Pooling: Max, Mean, Sum, etc

14

Convolutional Neural Network

* Convolutional Neural Network
% Need “local” information: Conv (with Kernel)

% Need to “combine” all local information together: Pooling: Max, Mean, Sum, etc

fc_ 3 fc 4
Fully-Connected Fully-Connected
Neural Network Neural Network

Conv_1 Conv_2 RelLU activation
Convolution Convolution /—&
,_* =
(5 x 5) kernel Max-Pooling (5 x 5) kernel
valid padding (2 x2) valid padding (2 x 2)

Max-Pooling . (with
/[@¥\\dropout)

e
o — NN s
INPUT nl channels nl channels n2 channels n2 channels E . G
(28 x 28 x 1) (24 x 24 x n1) (12 x12 x n1) (8 x 8 xn2) (4 x4 xn2) ‘/ I—
n3 units

15

Convolutional Neural Network

* Convolutional Neural Network

% Works well on image-like data (Euclidean space); computing-wise efficient and fast: same kernel applied everywhere

30 cm MicroBooNE
Data

16

Convolutional Neural Network

* Convolutional Neural Network
% WWorks well on image-like data (Euclidean space); computing-wise efficient and fast: same kernel applied everywhere

% But not all data are image-like;

17

Convolutional Neural Network

* Convolutional Neural Network
% WWorks well on image-like data (Euclidean space); computing-wise efficient and fast: same kernel applied everywhere

% But not all data are image-like: social relationship

18

Convolutional Neural Network

* Convolutional Neural Network

% WWorks well on image-like data (Euclidean space); computing-wise efficient and fast: same kernel applied everywhere

% But not all data are image-like: social relationship

19

Convolutional Neural Network

* Convolutional Neural Network

% WWorks well on image-like data (Euclidean space); computing-wise efficient and fast: same kernel applied everywhere

% But not all data are image-like: social relationship

20

Convolutional Neural Network

* Convolutional Neural Network
% Works well on image-like data (Euclidean space); computing-wise efficient and fast: same kernel applied everywhere
% But not all data are image-like: social network; particles in jets, etc

% And the resolutions, etc can be different in different phase-space regions

CMS experiment at LHC, CERN
data recorded: Tuesday Sept 27 10:30:59 2016 EDT
run/event/LS: 281707/1308250303/826

21

CNN->GNN

fc 3 fc 4
Fully-Connected Fully-Connected
Neural Network Neural Network
Conv_1 Conv_2 RelLU activation |
Convolution Convolution ke P ~
= RS |
(SI’fd-”) k:;f'e' Max-Pooling (5,’,‘d5) ":;',‘e' Max-Pooling (with
valid padding (2x2) valid padding (2x2) /[@\ dropout)
\3&,5 0
W X
T 4 R AV /a\\
INPUT nl channels nl channels n2 channels n2 channels s \‘ 9
(28 x 28 x 1) (24 x 24 x nl) (12x 12 xnl) (8 x 8 xn2) (4x4xn2) ,’// ——

n3 units
* Convolutional Neural Networks work on Euclidean space and can aggregate information from the “real”
neighbors adjacent to each target.

* Moving to Non-Euclidean space; do the similar type of “convolutions” to extract and aggregate information
from neighboring particles -> Graph Neural Network (More general and more powerful)

22

Graph Neural Networks

b= (3 W) * One Graph (G) has nodes (V) and edges (E): G = (V,E)
' * A set of nodes {/;} and their connections (edges): {¢,}

* Collect information among the nodes and edges

23

Message Passing Neural Network

* “message passing’: for target node i, “message” passed from
neighboring nodes to the target node is:

(k) — (k) 1,(k)
m.:" = ZM(hi ,hj , €;;

J
* Node feature update for the target node is:

RO = U, m®)

* M and U are message functions and node update functions,
respectively.

24

Message Passing Neural Network

* “message passing’: for target node i, “message” passed from
neighboring nodes to the target node is:

(k) — (k) 1,(k)
m.:" = ZM(hi ,hj , €;;

J
* Node feature update for the target node is:

RO = U, m®)

o Finally: with {hl.(p)} and {el§.P)}, one can do:

o2 Node classification: with f(hl.(P))
% Edge classification: with f(eif) or f(hl.(P), hj(P))

* Graph prediction: with pooling of a graph

25

Message Passing Neural Network

* “message passing’: for target node i, “message” passed from
neighboring nodes to the target node is:

(k) — (k) 1,(k)
m.:" = ZM(hi ,hj , €;;

J
* Node feature update for the target node is:

h+D = U ®), i ®)
l i 0

* Can aggregate information from both target node, neighboring node,
and the edges;

* can incorporate different kinds of symmetries and assumptions when
designing these functions -> very general and powerful

26

Example: GraphSage

"
]/ label

.
®
1. Sample neighborhood 2. Aggregate feature information 3. Predict graph context and label
from neighbors using aggregated information
Message: ml.(k) = Z hj(k)V
J
. Node feature update: hl.(kH) = G(hl.(k)W-l- ml.(k)) = a(hl.(k)W+ Z hj(k)V)

J
, Here Z is the pooling operation, can be max, mean, sum, etc;
J
27

Example: Dynamic Graph CNN

After the node feature update: hl.(kﬂ) = a(hl.(k)W+ ml.(k)) = G(hl.(k)W+ Z hj(k)V)
J

e Rebuild the graph in the new {hl.(kH)} latent space, with e.g., k-nearest neighbors

* The graph is dynamic now - the edges can change after one layer

28

Example: Graph Attention Network

concat /avg @

29

* Graphsage treats all the edges the same;
different edges can have different weights
when aggregating information

* |l.e. the message becomes:

(k) _ (kK)y/,, (k)
m." = Z hj Valj
J

where al§k) is “attention’ and calculated as:

a;.k) = softmaX(Q(k)hl.(k) - K (k)hj(k))

Q, K, V are often referred to as Query, Key,
and Value

Example: Graph Attention Network

|

U * |n partice, one “attention” usually focus on
’ one or a few edges/features

2 concat /avg 3 S, ,
@ * Need more “attentions’ -> multi-head
o attention

Q/\
%
* l.e. the message becomes:
o
(k) — (K@D, (kD)
m.:" = Concat(Zhj % a,;)

J

where ag"l) is I-th “attention’ in the k-th

layer:

ag"l) — softmaX(Q(kal)hi(k) : K(k’l)hj(k))

30

Graph Attention Network -> Transformer

|

|
LayerNorm
A
FF-MLP
A
LayerNorm
A
Concaty
A
XK
Heads Sum;
softmax;)é
A
Scaled Dot
Product . .
r 1 * Transformer are fully-connected word graph, with multi-
head attention, layer-norms, and feed-forward MLP
Qkf Kk,f ka
) ()

31

Goods and Bads

Goods and bads come at the same time. E.g.:

Lower and lower level of information, with more advanced architectures, can bring huge boosts to
performance increases

Industry, and open-source community, have provided us lots of tools to play with these, easy to get
hands on these

How much we trust such low-level information, is questionable; calibrations and evaluations of
systematic uncertainties can be very hard;

computing-wise can also take lots of resources

32

