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Disclaimer
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• I’m NOT a GraphNN expert, so I hope the messages I delivered are mostly correct, but it could be 
wrong/misunderstanding… 

• Most of them maybe sound straightforward; but in practice, training these neural networks could 
be much more tricky; need some experiences/tunings/magic…
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Graph Neural Network 
(Message Passing NN) 

GraphSage Graph Attention Network (Graph) Transformers



Multi Layer Perceptron
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• “Artificial” neuron / “Perceptron” 

• Inputs: x (flatten), outputs: y,  

• Outputs  

• W and b are the trainable weights and biases 

•  is the activation function, to bring non-linearity to the NN

y = σ(W × x + b)
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Multi Layer Perceptron
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•  is the activation function, to bring non-linearity to the NN: 

✤ ReLU for regression problems 

✤ Sigmoid for classification problems; Softmax for multi-classification 
problems
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Multi Layer Perceptron
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• Relatively easy to train and deploy;  

• but everything has to be “flat” -> “Geometric”/localized 
information are lost



Convolutional Neural Network
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• E.g: To identity a specific kind of galaxy:
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• Convolutional Neural Network 

✤ Need “local” information: Conv (with Kernel) 
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• Convolutional Neural Network 

✤ Works well on image-like data (Euclidean space); computing-wise efficient and fast: same kernel applied everywhere
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Convolutional Neural Network
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• Convolutional Neural Network 

✤ Works well on image-like data (Euclidean space); computing-wise efficient and fast: same kernel applied everywhere 

✤ But not all data are image-like: social network; particles in jets, etc 

✤ And the resolutions, etc can be different in different phase-space regions



CNN -> GNN
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• Convolutional Neural Networks work on Euclidean space and can aggregate information from the “real” 
neighbors adjacent to each target. 

• Moving to Non-Euclidean space; do the similar type of “convolutions” to extract and aggregate information 
from neighboring particles -> Graph Neural Network (More general and more powerful)



Graph Neural Networks
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• One Graph (G) has nodes (V) and edges (E): G = (V,E) 

• A set of nodes { } and their connections (edges): { } 

• Collect information among the nodes and edges

hi eij



Message Passing Neural Network
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• “message passing”: for target node i, “message” passed from 
neighboring nodes to the target node is: 

                         

• Node feature update for the target node is: 

                         

• M and U are message functions and node update functions, 
respectively. 

m(k)
i = ∑

j

M(h(k)
i , h(k)

j , eij)

h(k+1)
i = U(h(k)

i , m(k)
i )
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• “message passing”: for target node i, “message” passed from 
neighboring nodes to the target node is: 

                         

• Node feature update for the target node is: 

                         

• Finally: with  and , one can do: 

✤ Node classification: with  

✤ Edge classification: with  or  

✤ Graph prediction: with pooling of a graph

m(k)
i = ∑

j

M(h(k)
i , h(k)

j , eij)

h(k+1)
i = U(h(k)

i , m(k)
i )

{h(p)
i } {e(P)

ij }

f(h(P)
i )

f(eP
ij ) f(h(P)

i , h(P)
j )
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• “message passing”: for target node i, “message” passed from 
neighboring nodes to the target node is: 

                         

• Node feature update for the target node is: 

                         

• Can aggregate information from both target node, neighboring node, 
and the edges;  

• can incorporate different kinds of symmetries and assumptions when 
designing these functions -> very general and powerful

m(k)
i = ∑

j

M(h(k)
i , h(k)

j , eij)

h(k+1)
i = U(h(k)

i , m(k)
i )
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• Message:   

• Node feature update:  

• Here  is the pooling operation, can be max, mean, sum, etc;

m(k)
i = ∑

j

h(k)
j V

h(k+1)
i = σ(h(k)

i W + m(k)
i ) = σ(h(k)

i W + ∑
j

h(k)
j V)

∑
j

Example: GraphSage
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• After the node feature update:   

• Rebuild the graph in the new  latent space, with e.g., k-nearest neighbors 

• The graph is dynamic now - the edges can change after one layer

h(k+1)
i = σ(h(k)

i W + m(k)
i ) = σ(h(k)

i W + ∑
j

h(k)
j V)

{h(k+1)
i }

Example: Dynamic Graph CNN
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• Graphsage treats all the edges the same; 
different edges can have different weights 
when aggregating information 

• I.e. the message becomes: 

                 

   where  is “attention” and calculated as: 

               

   Q, K, V are often referred to as Query, Key, 
and Value

m(k)
i = ∑

j

h(k)
j Va(k)

ij

a(k)
ij

a(k)
ij = softmax(Q(k)h(k)

i ⋅ K(k)h(k)
j )

Example: Graph Attention Network
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• In partice, one “attention” usually focus on 
one or a few edges/features 

• Need more “attentions” -> multi-head 
attention  

• I.e. the message becomes: 

                ) 

   where  is l-th “attention” in the k-th 
layer: 

            

m(k)
i = Concat(∑

j

h(k)
j V(l)a(k,l)

ij

a(k,l)
ij

a(k,l)
ij = softmax(Q(k,l)h(k)

i ⋅ K(k,l)h(k)
j )

Example: Graph Attention Network



Graph Attention Network -> Transformer
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• Transformer are fully-connected word graph, with multi-
head attention, layer-norms, and feed-forward MLP 



Goods and Bads
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• Goods and bads come at the same time. E.g.: 

• Lower and lower level of information, with more advanced architectures, can bring huge boosts to 
performance increases 

• Industry, and open-source community, have provided us lots of tools to play with these, easy to get 
hands on these 

• How much we trust such low-level information, is questionable; calibrations and evaluations of 
systematic uncertainties can be very hard;  

• computing-wise can also take lots of resources
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