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Disclaimer

* I'm NOT a GraphNN expert, so | hope the messages | delivered are mostly correct, but it could be
wrong/misunderstanding...

* Most of them maybe sound straightforward; but in practice, training these neural networks could
be much more tricky; need some experiences/tunings/magic...
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Multi Layer Perceptron

Input Layer Hidden Layers Qutput Layer
g N

“Artificial” neuron / “Perceptron”

Inputs: x (flatten), outputs: Y,

Outputs y = 6(W X x + b)

W and b are the trainable weights and biases

o is the activation function, to bring non-linearity to the NN



Multi Layer Perceptron

RelLU Activation Function
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* o is the activation function, to bring non-linearity to the NN:
% RelU for regression problems
t\
2 Sigmoid for classification problems; Softmax for multi-classification s e a2 > 4 6 s
problems
Output Softmax
Iaygr activation function Probabilities
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Multi Layer Perceptron

Input Layer Hidden Layers Qutput Layer
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* Relatively easy to train and deploy; |

* but everything has to be “flat” -> “Geometric”/localized
information are lost

10



Convolutional Neural Network

* E.g: To identity a specific kind of galaxy:
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Convolutional Neural Network

* E.g: To identity a specific kind of galaxy:
% Need “local” information: Conv (with Kernel)

% Need to “combine” all local information together: Pooling: Max, Mean, Sum, etc
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Convolutional Neural Network

* Convolutional Neural Network
% Need “local” information: Conv (with Kernel)

% Need to “combine” all local information together: Pooling: Max, Mean, Sum, etc

fc_ 3 fc 4
Fully-Connected Fully-Connected
Neural Network Neural Network

Conv_1 Conv_2 RelLU activation
Convolution Convolution /—&
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Convolutional Neural Network

* Convolutional Neural Network

% Works well on image-like data (Euclidean space); computing-wise efficient and fast: same kernel applied everywhere

30 cm MicroBooNE
Data
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Convolutional Neural Network

* Convolutional Neural Network
% Works well on image-like data (Euclidean space); computing-wise efficient and fast: same kernel applied everywhere
% But not all data are image-like: social network; particles in jets, etc

% And the resolutions, etc can be different in different phase-space regions

CMS experiment at LHC, CERN
data recorded: Tuesday Sept 27 10:30:59 2016 EDT
run/event/LS: 281707/1308250303/826
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CNN->GNN
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* Convolutional Neural Networks work on Euclidean space and can aggregate information from the “real”
neighbors adjacent to each target.

* Moving to Non-Euclidean space; do the similar type of “convolutions” to extract and aggregate information
from neighboring particles -> Graph Neural Network (More general and more powerful)
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Graph Neural Networks

b= (3 W) * One Graph (G) has nodes (V) and edges (E): G = (V,E)
' * A set of nodes {/;} and their connections (edges): {¢,}

* Collect information among the nodes and edges
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Message Passing Neural Network

* “message passing’: for target node i, “message” passed from
neighboring nodes to the target node is:

(k) — (k) 1,(k)
m.:" = ZM(hi ,hj , €;;

J
* Node feature update for the target node is:

RO = U, m®)

* M and U are message functions and node update functions,
respectively.
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Message Passing Neural Network

* “message passing’: for target node i, “message” passed from
neighboring nodes to the target node is:

(k) — (k) 1,(k)
m.:" = ZM(hi ,hj , €;;

J
* Node feature update for the target node is:

RO = U, m®)

o Finally: with {hl.(p)} and {el§.P)}, one can do:

o2 Node classification: with f(hl.(P ))
% Edge classification: with f(eif ) or f(hl.(P ), hj(P ))

* Graph prediction: with pooling of a graph
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Message Passing Neural Network

* “message passing’: for target node i, “message” passed from
neighboring nodes to the target node is:

(k) — (k) 1,(k)
m.:" = ZM(hi ,hj , €;;

J
* Node feature update for the target node is:

h+D = U ®), i ®)
l i 0

* Can aggregate information from both target node, neighboring node,
and the edges;

* can incorporate different kinds of symmetries and assumptions when
designing these functions -> very general and powerful
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Example: GraphSage

"
]/ label

.
®
1. Sample neighborhood 2. Aggregate feature information 3. Predict graph context and label
from neighbors using aggregated information
Message: ml.(k) = Z hj(k)V
J
. Node feature update: hl.(kH) = G(hl.(k)W-l- ml.(k)) = a(hl.(k)W+ Z hj(k)V)

J
, Here Z is the pooling operation, can be max, mean, sum, etc;
J
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Example: Dynamic Graph CNN

After the node feature update: hl.(kﬂ) = a(hl.(k)W+ ml.(k)) = G(hl.(k)W+ Z hj(k)V)
J

e Rebuild the graph in the new {hl.(kH)} latent space, with e.g., k-nearest neighbors

* The graph is dynamic now - the edges can change after one layer
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Example: Graph Attention Network

concat /avg @
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* Graphsage treats all the edges the same;
different edges can have different weights
when aggregating information

* |l.e. the message becomes:

(k) _ (kK)y/,, (k)
m." = Z hj Valj
J

where al§k) is “attention’ and calculated as:

a;.k) = softmaX(Q(k)hl.(k) - K (k)hj(k))

Q, K, V are often referred to as Query, Key,
and Value



Example: Graph Attention Network

|

U * |n partice, one “attention” usually focus on
’ one or a few edges/features

2 concat /avg 3 S, ,
@ * Need more “attentions’ -> multi-head
o attention

Q/\
%
* l.e. the message becomes:
o
(k) — (K@D, (kD)
m.:" = Concat(Zhj % a,; )

J

where ag"l) is I-th “attention’ in the k-th

layer:

ag"l) — softmaX(Q(kal)hi(k) : K(k’l)hj(k))
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Graph Attention Network -> Transformer

|

|
LayerNorm
A
FF-MLP
A
LayerNorm
A
Concaty
A
XK
Heads Sum;
softmax; )é
A
Scaled Dot
Product . .
r 1 * Transformer are fully-connected word graph, with multi-
head attention, layer-norms, and feed-forward MLP
Qkf Kk,f ka
) ()
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Goods and Bads

Goods and bads come at the same time. E.g.:

Lower and lower level of information, with more advanced architectures, can bring huge boosts to
performance increases

Industry, and open-source community, have provided us lots of tools to play with these, easy to get
hands on these

How much we trust such low-level information, is questionable; calibrations and evaluations of
systematic uncertainties can be very hard;

computing-wise can also take lots of resources
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