
Semi-supervised GraphNN for  
Pileup Noise Removal 

Shikun Liu, Tianchun Li, Pan Li, Miaoyuan Liu, Lisa Paspalaki (Purdue) 

Yongbin Feng, Nhan Tran (Fermilab) 

EPE Machine Learning 

May 3rd, 2022

1



What is PileUp

2

• Pileup (PU): additional proton-proton interactions in the same or nearby bunch crossings



Why PileUp Mitigation

3

• PU at Run-II: ~30-40;  expected to increase to 140-150 at HL-LHC 

• PU can significantly affect the reconstruction and performance of many physics observables, such as jet 
mass, jet pT, and pTmiss 

• PU mitigation is needed



PileUp Mitigation: How?

4

• Charged particles easy to deal with - Leading Vertex (LV) or Pileup (PU) charged particles can be easily 
identified because of excellent tracking and vertexing efficiency and  

• Problem is how to identify pileup neutral particles and remove these



Classical PileUp Mitigation Techniques

5

• Run-I: Area-based pileup subtraction: 

✤ e.g., calculate the pileup energy density outside 
the jet cone; and use the average to correct jet 
energy 

• Later on: Soft-Killer [Arxiv.1407.0408] 

✤ Pileup particles have lower pT; kill the pileup by 
removing “soft” particles 

✤ Calculate the median pT: 
; cut on the median 

pT to remove pileup 

✤ pT is a particle’s “self feature”; no strong 
connection with the other particles in the 
same event

pcut
T = mediani∈patchespmax

T,i

http://1407.0408


Classical PileUp Mitigation Techniques

6

• PUPPI: [Arxiv:1407.6013] 

✤ Makes use of the neighboring particle features: LV 
particles are usually surrounded by LV particles; PU 
particles are more isotropic  

✤ Calculate a local shape variable alpha: 

✤ Alpha is aggregating information from the neighboring 
particles. e.g., aggregating  only from the neighboring 
charged LV particles  

✤ Per-particle weight (PUPPI weight, in the range of 0-1) 
is calculated based on alpha; particle 4-momenta are 
rescaled based on the PUPPI weight

ξij

https://arxiv.org/pdf/1407.6013.pdf


Learned From Classical Techniques

7

• Information we can use for pileup mitigation 

✤ Per-particle individual features: PU particles low pT; LV particles high pT; PU particles more in the forward region; 
LV particles more in the central region 

✤ Particle neighboring features: PU particle neighbors are more likely to be PU; LV particle neighbors are more likely 
to be LV 

• To put together make use all such information together: 

✤ Combining particle individual features and neighboring features; 

✤ Avoid preselections, cut tunings, matrix selectetc 

• GraphNN is an efficient and effective way to do this.



CNN -> GNN

8

• Convolutional Neural Networks work on Euclidean space and can aggregate information from the “real” 
neighbors adjacent to each target. 

• Moving to Non-Euclidean space; do the similar type of “convolutions” to extract and aggregate information 
from neighboring particles -> Graph Neural Network (More general and more powerful)



Graph Neural Networks

9

• One Graph (G) has nodes (V) and edges (E): G = (V,E) 

• For one node , represented with . the available information includes:  

✤ Target node itself:  

✤ Neighboring nodes: { } 

✤ Neighboring edges: { } 

• “message passing”. The node representation upgrade in the k-th 
iteration, is a function of ( , { }, { }) 

✤  

• Can aggregate information from both target node, neighboring node, and 
the edges 

•  Information upgrades have a lot of degrees of freedom; 

✤ Can include different types of symmetries in the expression; works very well 
on point-cloud data (HEP data is mostly point-cloud)

xi hi

hi

hj

eij

hi hj eij

hk+1
i = f(hk

i , hj, eij)



Typical Graph Neural Networks

10

• GraphSage:  

✤ Poor the neighboring information together, combine with the target node information 

✤
 

• Gate models:  

✤ Add one gate  to control the message passing (“importance”): 

✤  

✤ , where  is in the range of 0-1 

• Attention models:  

✤ “Attention” to different nodes and edges 

✤
, where  for normalization

hk+1
u = f(hk

u, {hk
vj
}, {ek

u,vj
}) = σ(hk

uwk
1 + ∑

vj

hk
vj
wk

2)

Gk
u

h̄k+1
u = f(hk

u, {hk
vj
}, {ek

u,vj
})

hk+1
u = Gk

uh̄k
u + (1 − Gk

u)hk
vj

Gk
u = Sigmoid(h̄k

u, hk
u)

∑
vi

hk
vi

→ ∑
vi

Attku,vj
hk

vj ∑
vi∈N

Attkuvj
= 1



Our Model Architecture

11

• Build graph in  space. Connect the particles in the  cone.Input features: 

✤ Node features:   , charge 

✤ Edge features: , , and  between particles 

• Outputs are a weight between 0 and 1, representing the probability that the particle is produced from the LV 

• Model architecture: gated model

η − ϕ ΔR = 0.4/0.8

pT

Δη Δϕ ΔR

Δη, Δϕ, ΔR

charge,pT,



Our Model Architecture

12

Δη, Δϕ, ΔR

charge,pT,



Semi-Supervised Learning

13

• To operate at particle level, the current ML models would require the 
prior knowledge of whether the particle is produced from PU or LV, as the 
ground truth information 

✤ For charged particles, it is easy to retrieve, even in the real data 

✤ For neutral particles, currently very hard to recover truth information, 
sometimes mixed LV/PU; no truth information in the real data 

• How about we train the model using the charged particles, and then do 
inference on neutral particles? 

✤ This semi-supervised ML method would allow us to train directly on real data/
full simulation, without worrying about the labels for the ground truth 
information 

✤ This semi-supervised training strategy would work on different ML models and 
architectures



Masking & Training Details

14

• Build graph in  space 

• Randomly select and mask a 
subset of charged particles 

• Train on these charged particles 

• Move to the next event and 
repeat

η − ϕ



Training Datasets

15

• Using similar setup as the PUPPIML 

✤ Pythia 8.223 + Delphes 3.3.2 for simulation 

✤ Z( )+jets signal processes 

✤ Pythia-generated QCD events as pileup; Poisson distribution sampled with the average pileup of 80 and 140 

✤ Charged particle flag for the LV and PU is set to be perfect 

• Number of different particles per event at PU=80 (with pT>0.5GeV cut)

νν

# Particles Charged Neutral

LV 85 50

PileUp 1600 800



16

• Train on nPU=80; test on nPU=80; both supervised and semi-supervised outperforms PUPPI; supervised and semi-
supervised results are close 

• Train on nPU=80, still performs well on nPU=149 and nPU=20

Per-Particle Performances



Performance on Jet Mass, pT (PU80)

17

• Similar performances on jets and MET for supervised and semi-supervised; both are better than PUPPI



Event Display

18

• One event display example 

• Supervised and Semi-supervised clean the 
pileup more effective than PUPPI 

• Supervised and semi-supervised are 
similar



GNN Weights on Neutral Particles

19

• GNN Weights of neutral particles from the LV (blue) and pileup (red) on the left; right plot is the PUPPI weight 
distribution as a reference 

• Much smaller fraction of particles get a weight around 1. 

• Compared with Supervised training, the semi-supervised training seems to tend to have fewer particles in the 
middle weight range



Summary

20

• Presented the study of applying semi-supervised training for pileup mitigation with GraphNN, where the 
training is done on charged particles, and the inference is on neutral particles 

• Results look very promising 

✤ Better ROC curve and resolutions on jet mass and MET for both supervised training and semi-supervised 
training 

✤ No significant performance drop going from supervised to semi-supervised 

• Working on the evaluations on the CMS full-simulations; more features to explore; more realistic conditions 
and challenges to handle.



Back Up

21



Introduction: Pileup Mitigation Studies

22

• Most charged leading vertex (LV) and pileup (PU) particles can 
be identified (Charged hadron subtraction, CHS) 

• Particle self features: PU particles have lower-pT -> SoftKiller 

• Particle neighboring features: PUPPI. A local shape variable  is 
defined and PUPPI weights are calculated based on 

α
α

• Pileup Mitigation with ML (PUMML, arxiv 1707.08600): 
Convolutional neural network on jet image 

• Gated Graph Neural Network for PUPPI (PUPPIML, 
arxiv.1810.07988): GGNN on particle graph 

• Other graph/attention models: (ABCNet, arxiv.2001.05311), 
(PUMA: with transformer, arxiv.2107.02779)



More Event Display

23

Truth PUPPI GNN



More Event Display

24

Truth PUPPI GNN


