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PU can significantly affect the reconstruction and performance of many physics observables, such as jet
mass, jet pI, and p Tmiss

PU mitigation is needed



PileUp Mitigation: How?

* Charged particles easy to deal with - Leading Vertex (LV) or Pileup (PU) charged particles can be easily
identified because of excellent tracking and vertexing efficiency and

* Problem is how to identify pileup neutral particles and remove these



Classical PileUp Mitigation Techniques

* Run-|: Area-based pileup subtraction:

2 e.g., calculate the pileup energy density outside
the jet cone; and use the average to correct jet

energy

* Later on: Soft-Killer [Arxiv.1407.0408]

% Pileup particles have lower pT; kill the pileup by
removing “soft” particles

Original event After SoftKiller
% Calculate the median pT: —— —_
pr = median;c,,chesPT s cut on the median B Pieup B Pieup
pT to remove pileup
2 PpIT is a particle’s “self feature”; no strong o w
connection Wlth the other particles in the | Ill!’ llwlm\w% \ 1 §1H|1||1|§ A ’llgllllllllgnlh JJ _ éemptyé | éemptyé’ 1 l | éempty?empty?empty?

same event


http://1407.0408

Classical PileUp Mitigation Techniques

* PUPPI: [Arxiv:1407.6013]

2 Makes use of the neighboring particle features: LV
particles are usually surrounded by LV particles; PU
particles are more isotropic

. Calculate a local shape variable alpha:

a; = log Z &ij X O(Rmin < AR;; < Ryp),
j€Eevent

DT

where &j — A—I{m

o Alpha is aggregating information from the neighboring

particles. e.g., aggregating ¢;; only from the neighboring
charged LV particles

% Per-particle weight (PUPPI weight, in the range of 0-1)
is calculated based on alpha; particle 4-momenta are
rescaled based on the PUPPI weight
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https://arxiv.org/pdf/1407.6013.pdf

Learned From Classical Techniques

* Information we can use for pileup mitigation

% Per-particle individual features: PU particles low pT; LV particles high pT; PU particles more in the forward region;
LV particles more in the central region

% Particle neighboring features: PU particle neighbors are more likely to be PU; LV particle neighbors are more likely
to be LV

* To put together make use all such information together:

e Combining particle individual features and neighboring features;

% Avoid preselections, cut tunings, matrix selectetc

* GraphNN is an efficient and effective way to do this.



CNN->GNN
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* Convolutional Neural Networks work on Euclidean space and can aggregate information from the “rea
neighbors adjacent to each target.

* Moving to Non-Euclidean space; do the similar type of “convolutions” to extract and aggregate information
from neighboring particles -> Graph Neural Network (More general and more powerful)



Graph Neural Networks

One Graph (G) has nodes (V) and edges (E): G = (V,E)
* For one node x;, represented with /.. the available information includes:
¢ Target node itself: 4,
2 Neighboring nodes: {/}
% Neighboring edges: {¢;}

* “message passing’. The node representation upgrade in the k-th
iteration, is a function of (i, {}, {¢;})

k+1 k
’x‘ h " _f(hlahjael])

* Can aggregate information from both target node, neighboring node, and
the edges

* Information upgrades have a lot of degrees of freedom;

% Can include different types of symmetries in the expression; works very well
on point-cloud data (HEP data is mostly point-cloud)
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Typical Graph Neural Networks

* GraphSage:

% Poor the neighboring information together, combine with the target node information

. RN = f(RE (RE), (ef 1) = o(hfwE + ) hfwky

* Gate models:

% Add one gate Gblf to control the message passing (“importance”):

o R = fOhE (RS, ek, )

o Wl = GRRE 4+ (1 = Gb]f)hfj, where G* = Sigmoid(h*, h*) is in the range of 0-]

u’>""u

* Attention models:

2 “Attention” to different nodes and edges

RESVR
u,vj VJ

- Z hfl — Z Att*  h*, where 2 Att’fwj = | for normalization
V; V; Vl-EN
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Our Model Architecture

S ——— - - . ————

—_._1 Node-level gate . Node update .

} G} 7 ks J:

* Build graph in 7 — ¢ space. Connect the particles in the AR = 0.4/0.8 cone.Input features:

2 Node features: p;, charge

% Edge features: An, A¢@, and AR between particles
* Outputs are a weight between 0 and |, representing the probability that the particle is produced from the LV

Model architecture: gated model

[



Our Model Architecture

1—gqy O Cf @

P, Charge,
Noseimwigne] | | (edewdnel 0
{8 )i (Ol -{k ]
" t An, A, AR

Message formulation: my, = [h,ﬁ_l, h,l'f_l, ANy, DOy, ARy, h’;_l] :
Aggregation: m, =) N (v)uv Mo, where g, = Sigmoid(Wim.., + b1)

Node-level gate: ¢, = Sigmoid(Wa[h*~1 m,] + bs)
Node update: h* = ReLU(q,(W3h¥™! 4+ b3)) + (1 — ¢ )(Wam,, + bs)),
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Semi-Supervised Learning

To operate at particle level, the current ML models would require the
prior knowledge of whether the particle is produced from PU or LV, as the

ground truth information

2 For charged particles, it is easy to retrieve, even in the real data

% For neutral particles, currently very hard to recover truth information,
sometimes mixed LV/PU; no truth information in the real data

How about we train the model using the charged particles, and then do

inference on neutral particles!?

% This semi-supervised ML method would allow us to train directly on real data/
full simulation, without worrying about the labels for the ground truth

information

o This semi-supervised training strategy would work on different ML models and

architectures
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Masking & Training Details

(a). Construct one graph per event
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O
\© "o —
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© Charged LV particles
O Charged PU particles
O Neutral particles

& § D

[ 1 Common features

[ Charged LV label encoding
7] Charged PU label encoding
[ Neutral label encoding

\i i/

(d). Predict LV/PU

)

For each
graph G;

(b). Randomly select charged LV/PU particles,
and mask the label encoding for training

e
O O
—[ T[] - \,,O_’:I:]

(c). Aggregate neighbors’ features and update node
representation with GNN

Figure 1: A diagram illustrating the SSL model training flow
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Build graph in 7 — ¢ space

Randomly select and mask a
subset of charged particles

Train on these charged particles

Move to the next event and
repeat



Training Datasets

* Using similar setup as the PUPPIML
% Pythia 8.223 + Delphes 3.3.2 for simulation
2 Z(vv)tjets signal processes
% Pythia-generated QCD events as pileup; Poisson distribution sampled with the average pileup of 80 and 140

% Charged particle flag for the LV and PU is set to be perfect

Number of different particles per event at PU=80 (with pT>0.5GeV cut)

LV 35 50

PileUp 1600 300

15
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Performance on JetMass, pT (PUSO)
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Figure 4: Performance on jet mass and jet pr with different pileup mitigation techniques for npy = 80.
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Similar performances on jets and MET for supervised and semi-supervised; both are better than PUPPI
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One event display example

Supervised and Semi-supervised clean the
pileup more effective than PUPPI

Supervised and semi-supervised are
similar



GNN Weights on Neutral Particles
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GNN Weights of neutral particles from the LV (blue) and pileup (red) on the left; right plot is the PUPPI weight
distribution as a reference

Much smaller fraction of particles get a weight around |.

Compared with Supervised training, the semi-supervised training seems to tend to have fewer particles in the
middle weight range
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Summary

Presented the study of applying semi-supervised training for pileup mitigation with GraphNN, where the
training is done on charged particles, and the inference is on neutral particles

Results look very promising

% Better ROC curve and resolutions on jet mass and MET for both supervised training and semi-supervised
training

2 No significant performance drop going from supervised to semi-supervised

Working on the evaluations on the CMS full-simulations; more features to explore; more realistic conditions
and challenges to handle.
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Introduction: Pileup Mltlgatl()n Studies

0.364 fb' (13 TeV)

IIIIIIIIIIIIIIIIIIIIIIIIIII

Most charged leading vertex (LV) and pileup (PU) particles can 0 CMS  “mprepicze

—— Simulation, charged PU

be identified (Charged hadron subtraction, CHS) e L

+ Data, neutral
—— Simulation, neutral

—
T |

—
<
|

Particle self features: PU particles have lower-pT -> SoftKiller

—
<
N
|
|

Particle neighboring features: PUPPI. A local shape variable a is
defined and PUPPI weights are calculated based on «

—

S
w
I

-0
IN

Data
Simulation _
o :

o O . O
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Pileup Mitigation with ML (PUMML, arxiv 1707.08600):
Convolutional neural network on jet image

Gated Graph Neural Network for PUPPI (PUPPIML,
arxiv.1810.07988): GGNN on particle graph

Other graph/attention models: (ABCNet, arxiv.2001.0531 1),
(PUMA: with transformer; arxiv.2107.02779)

GGNN (100)
GGNN (100)
GGNN (100)

N
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More Event Display
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