DarkQuest Searching for light dark matter at Fermilab's Proton Fixed-Target Experiment Yongbin Feng (Fermilab) for the DarkQuest Team PHENO 2022, Pittsburg, PA, USA May 9th, 2022 ## Physics Motivation - Dark Sectors provide the DM candidates, and can also address many other open problems in particle physics (baryogenesis, strong CP problem, neutrino masses, hierarchy problem, etc) - High-intensity accelerators and fixed-target experiments provide an ideal environment to probe dark sector physics in MeV-GeV range ## Signal Processes: Dark Photon Example A.Berlin, S.Gori, P.Schuster, N.Toro Arxiv: 1804.00661 - For proton fixed-target beam dump experiment, three dominant signal production mechanisms: meson decay, proton bremsstrahlung, and Drell-Yan process - Larger production rates with proton beams compared with electron beams ## Experimental Setup: SpinQuest - 120 GeV high-intensity proton beam from the Fermilab Accelerator Complex - d Expect 10^{18} Protons on target (POT) in a 2-year parasitic run, and 10^{20} POT after the PIP-II accelerator upgrade - SpinQuest spectrometer 5m thick FMag as the beam dump and absorber; hollow KMag for tracking; and 4 stations of drift chambers (tracking) and scintillator hodoscopes (triggering) - Measuring the Drell-Yan process for studying the Transverse Momentum Dependent PDFs (TMDs) inside the proton ## Experimental Setup: Dark Quest - Make full use of the existing SpinQuest spectrometer - Upgrade with one Electromagnetic calorimeter (EMCal) sector (2mx4m, from PHENIX Experiment): - Provide access to electron and photon final states. Broaden the coverage to lower masses below $2m_u$ - Provide more sensitivity by rejecting muon and hadron backgrounds ## Why Dark Quest - Large dark sector production cross section with I20GeV highintensity proton beam - Compact geometry and relatively short displacement baseline $(\mathcal{O}(m))$ to cover unique and broad phase space: - KMag and 3-4 tracking layers provide good momentum measurement - Scintillator hodoscopes + EMCal to trigger on signals - EMCal opens up new final states distinct from large muon backgrounds - Most of the experimental components already exist, very low cost ## Broad Sensitivity Coverage - Broad coverage to different theory models, e.g., - Berlin, Gori, Schuster, & Toro, Arxiv. 1804.00661 - Batell, Evans, Gori, & Rai, Arxiv.200808108 - Berlin, Blinov, Gori, Schuster, Toro, Arxiv. 1801.05805 ## Spectrometer Upgrade - EMCal integration into the spectrometer: - Developments of the readout and trigger system ongoing - Currently in possession of a few cells to explore SiPM readouts - Additional proportional tubes from HyperCP experiment can be installed before KMag to improve the tracking ## Trigger - Exploring newly installed Dark Photon trigger: - Large improvements on the displaced signals compared with the existing standard hodoscope triggers - Working on the trigger design and the implementations - Include EMCal information in the trigger system - Good separation of electron/photon signals out of hadron and muon backgrounds ## Tracking and Vertexing - Improved tracking and vertaxing for displaced tracks and vertices based on the existing SpinQuest code: - Better resolution for tracks and vertices compared with prompt DY signals because of the less impact from the FMag in the front. - ₹ 75% track reconstruction efficiency for high momentum particles; 5% mass resolution, 5-10cm Z resolution for dark photons decaying after FMag ### Particle Identification - Well-separated electron showers in the EMCal - Working on Particle ID based on the combination of tracking and EMCal information ## Signal Acceptance - Dark photon signal acceptance as a function of coupling and masses - Only includes the muon channel; working on understanding the electron channel - Simulation and study of the hadron and muon backgrounds ongoing. ### Collaboration A strong team assembled of both experimentalists and theorists; having regular meetings for more than two years - Integration with the Snowmass project; have one Snowmass paper on this: https://arxiv.org/pdf/ 2203.08322.pdf - We are establishing strong connections with the current SpinQuest collaboration, testing and installing upgrades, taking data, and performing analysis - Welcome to join the effort! Contact us if interested! (yfeng@fnal.gov ntran@fnal.gov) #### DarkQuest: A dark sector upgrade to SpinQuest at the 120 GeV Fermilab Main Injector Aram Apyan¹, Brian Batell², Asher Berlin³, Nikita Blinov⁴, Caspian Chaharom⁵, Sergio Cuadra⁶, Zeynep Demiragli⁵, Adam Duran⁷, Yongbin Feng³, I.P. Fernando⁸, Stefania Gori⁹, Philip Harris⁶, Duc Hoang⁶, Dustin Keller⁸, Elizabeth Kowalczyk¹⁰, Monica Leys², Kun Liu¹¹, Ming Liu¹¹, Wolfgang Lorenzon¹², Petar Maksimovic¹³, Cristina Mantilla Suarez³, Hrachya Marukyan¹⁴, Amitav Mitra¹³, Yoshiyuki Miyachi¹⁵, Patrick McCormack⁶, Eric A. Moreno⁶, Yasser Corrales Morales¹¹, Noah Paladino⁶, Mudit Rai², Sebastian Rotella⁶, Luke Saunders⁵, Shinaya Sawada²¹, Carli Smith¹⁷, David Sperka⁵, Rick Tesarek³, Nhan Tran³, Yu-Dai Tsai¹⁸, Zijie Wan⁵, and Margaret Wynne¹² ¹Brandeis University, Waltham, MA 02453, USA ²University of Pittsburgh, Pittsburgh, PA 15260, USA ³Fermi National Accelerator Laboratory, Batavia, IL 60510, USA ⁴University of Victoria, Victoria, BC V8P 5C2, Canada ⁵Boston University, Boston, MA 02215, USA ⁶Massachusetts Institute of Technology, Cambridge, MA 02139, USA ⁷San Francisco State University, San Francisco, CA 94132, USA ⁸University of Virginia, Charlottesville, VA 22904, USA ⁹University of California Santa Cruz, Santa Cruz, CA 95064, USA ¹⁰Michigan State University, East Lansing, Michigan 48824, USA ¹¹Los Alamos National Laboratory, Los Alamos, NM 87545, USA ¹²University of Michigan, Ann Arbor, MI 48109, USA ¹³Johns Hopkins University, Baltimore, MD 21218, USA ¹⁴Yamagata University, Yamagata, 990-8560, Japan ¹⁵KEK Tsukuba, Tsukuba, Ibaraki 305-0801 Japan ¹⁶Yerevan Physics Institute, Yerevan, 0036, Republic of Armenia ¹⁷Penn State University, State College, PA 16801, USA ¹⁸University of California Irvine, Irvine, CA 92697, USA ## Summary - DarkQuest is a high-intensity proton beam-dump experiment, which makes use of current SpinQuest experiment, with the upgraded EMCal from sPHENIX experiment - DarkQuest offers a low-cost and near-term opportunity to uncover a broad range of MeV-GeV dark sectors - Planned timeline: SpinQuest run (~2022) and aim to start dark sector exploration in 2023-2024! - A lot of electronics design, simulation, and reconstruction studies ongoing; welcome to join the efforts! (yfeng@fnal.gov, ntran@fnal.gov) ## Back Up ## Why Dark Quest: Connection with (g-2) Anomaly A.Berlin, S.Gori, P.Schuster, N.Toro Arxiv:1804.00661 - Large flux of secondary muons from pion decays traversing a thick target, which makes DarkQuest a muon beam dump experiment - Search for displaced decays of light muon-coupled mediators ## Ongoing Studies: EMCal Simulations - Integrate the EMCal into the SpinQuest simulation framework; validate the performance and study the reconstructions - Left plot is one example event display of two electron showers in the EMCal - Right plot shows the agreement of the resolutions between the simulation (red) and the previous test beam results ## Future Upgrade: DarkQuest -> LongQuest • Future upgrades of DarkQuest - LongQuest: adding particle ID detector, new dump and new fast tracking, and ECAL, to further extend the coverage and sensitivity; explore this for Snowmass